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Applications of computer-based group-theoretical methods to perovskite

crystallography are reviewed. Such methods furnish a systematic account of

the effects on the high-symmetry parent structure of diverse distortions. New

results are presented for elpasolites (ordered double perovskites) when both

ferroelectric cation displacement and simple octahedral tilting are allowed.

Group-theoretical results prove invaluable in assisting experimental studies of

perovskites since, if the nature of the distortion is known, they limit the possible

structures or, in relation to more extensive studies, constrain the sequences of

structures that may occur. Spontaneous strains and the estimation of order

parameters are brie¯y discussed. Group-theoretical methods are undoubtedly a

powerful aid to the study of perovskite crystallography, and their computer

implementation makes them more accessible than hitherto.

1. Introduction

Though the basic perovskite ABX3 structure was established

long ago (Kay & Bailey, 1957), the perovskite family (Mitchell,

2002) has held the interest of crystallographers to the present

day (Glazer, 1972, 1975; Megaw, 1973; Thomas, 1989, 1996;

Burns & Glazer, 1990; Woodward, 1997a,b). Structural varia-

tion in this family is often subtle, so the variants may differ

only slightly from the cubic aristotype. This can make the

determination of symmetry and structure a quite challenging

task. Associated with the structural variation are structural

phase transitions, occurring in response to changes in

temperature, pressure or composition. The detailed study of

such transitions, including a determination of the structures

involved, represents another interesting if testing activity.

Interest in perovskites is by no means restricted to their

crystallography. Perovskites exhibit a range of electrical and

magnetic properties, giving rise to important actual and

potential applications. For example, BaTiO3 is ferroelectric at

room temperature, with high dielectric constant, and is the

major constituent of multilayer ceramic capacitors. These

capacitors are delivering miniaturization to the electronics

industry, being employed in lightweight notebook computers

and mobile phones. BaTiO3 is also used for thermistor devices,

the electrical resistance increasing sharply at temperatures

above the tetragonal to cubic phase transition. Lead zirconate

titanate (PbZrO3±PbTiO3, abbreviated PZT), is another

perovskite in widespread use. This is ferroelectric at room

temperature, with good piezoelectric response, and has long

found application both as sensor (e.g. sonar detector, piezo-

electric gas igniter) and actuator (e.g. precision positioning

devices, advanced fuel injectors, certain inkjet printers). The

piezoelectric response of PZT is intimately linked to its crystal

structure, and best performance is achieved in compositions

close to a phase boundary (Newnham, 1998). Tungsten

trioxide, WO3, a semiconductor, and structurally a close

relative of perovskite, is the active material in electrochromic

windows. Certain more complex perovskites ®nd application

as microwave resonators, on account of their high relative

permittivity, low dielectric loss, and near-zero temperature

coef®cient of resonant frequency (Kawashima et al., 1983).

Future applications of perovskites are indicated by current

research. Thin ®lms of Cr-doped SrTiO3 and SrZrO3, for

example, are being studied (Beck et al., 2000) for their

potential in non-volatile computer memories. The majority of

materials exhibiting a giant magnetoresistive response (Gong

et al., 1995) are perovskites, and the now famous high-

temperature oxide superconductors (Cava et al., 1987;

Capponi et al., 1987) still under intensive investigation are also

generally considered as members of the extended perovskite

family (Mitchell, 2002). Finally, we remark on the importance

of perovskites in the earth sciences. Magnesium silicate in

particular, MgSiO3, is considered to adopt the perovskite

structure in the earth's lower mantle, making silicate perov-

skites the most abundant minerals on earth (Ringwood, 1962;

Mitchell, 2002). The in¯uence of phase transitions on the

elastic constants of lower mantle perovskites may be of

1 This article is dedicated to Helen D. Megaw (1907±2002), in appreciation of
her many contributions to the crystallography of inorganic and mineral
compounds, including her seminal studies of perovskites. Some of the material
was presented by CJH in the Megaw memorial session at the 21st European
Crystallography Meeting, Durban, South Africa, August 2003.



particular signi®cance in seismology (Carpenter & Salje,

1998). There are reasons aplenty for investigations of

perovskites to be continued.

The structure of the ideal perovskite is cubic, with space-

group symmetry Pm�3m, and has been described (Megaw,

1973) as `probably the simplest example of a structure

containing two different cations'. The only variable parameter

in this ideal cubic structure is the lattice parameter, and for

only rather few combinations ABX3 (e.g. SrTiO3 at room

temperature) is the ideal structure formed. The structure can

however be distorted to accommodate a much wider range of

ions, and indeed most perovskites have lower symmetry than

the aristotype. Three different distortions have been identi®ed

(Megaw, 1973): distortions of the BX6 octahedral units,

B-cation displacements within these octahedra, and the tilting

of the BX6 octahedra relative to one another as practically

rigid corner-linked units. These different kinds of distortion

can occur separately or in combination. If we add the possi-

bilities of more than one cation on the A or B sites, and more

than one anion on the X site, and of the ordering of these

different cations/anions in the pertinent sites, then many

different structures are produced. It is said (Mitchell, 2002)

that every element of the Periodic Table, with the exception of

the noble gases, can be found in some perovskite or perovskite

variant.

The investigation of perovskite structures can be greatly

assisted by prior analysis of the distortions involved and the

structures that might result. The idea is to simplify the crys-

tallographic problem by limiting the number of solutions. The

analysis can also lead to an understanding of the inter-

relationship between the different structures, and the nature,

continuous or otherwise, of any transitions that occur between

them. This provides a valuable reference when phase transi-

tions are under study. In our own studies of perovskites

(Howard & Stokes, 1998; Howard et al., 2002; Stokes et al.,

2002; Howard et al., 2003; Howard & Zhang, 2004a,b), we used

group-theoretical methods to enumerate the possible struc-

tures, and to examine the relationships between them. The

methods used for ®nding isotropy subgroups were those

developed by Hatch and Stokes (Hatch, 1984; Stokes & Hatch,

1984, 1985; Hatch & Stokes, 1985, 1986, 1987a,b; Hatch et al.,

1987) and implemented in the computer program ISOTROPY

(http://stokes.byu.edu/isotropy.html). This group-theoretical

approach might be considered as a formal development from

the ideas advanced by Megaw (1973) some 30 years ago.

Guided by results from group-theoretical analyses, we have

carried out a number of experimental studies on structures

and structural phase transitions in perovskites (see for

example Kennedy, Prodjosantoso & Howard, 1999; Howard,

Kennedy & Chakoumakos, 2000; Howard, Knight et al., 2000;

Moussa et al., 2001; Howard et al., 2001, 2002; Howard &

Zhang, 2003; Carpenter et al., 2005). For the most part, we

have used high-resolution X-ray and neutron powder

diffraction techniques. Diffraction patterns from distorted

perovskites will show splitting of the main perovskite peaks

and/or additional superlattice peaks, but since the distortions

are often subtle the splitting may be slight and the superlattice

peaks weak. Thus, high resolution may be required to resolve

the peak splitting, while neutron diffraction can be advanta-

geous when only the lighter elements contribute to the

superlattice peaks. Order parameters for phase transitions can

be derived from either atomic coordinates or spontaneous

strains. In the case of temperature-induced phase transitions,

the use of ®ne temperature steps has enabled us to better

judge the nature (e.g. continuous or discontinuous) of the

phase transition. The use of powder diffraction techniques

relates to the dif®culty of obtaining good monodomain single

crystals ± even if the cubic phase can be obtained in single-

crystal form, it is likely that the crystal will comprise multiple

domains below any phase transition that occurs. In certain

cases (see for example Howard et al., 2001), a single domain

can be examined using electron diffraction with small probe

size and, since the superlattice peaks are readily seen in

electron diffraction, this method becomes a powerful aid to

the determination of space-group symmetry.

In this paper, we shall endeavour to explain how to

enumerate the structures of distorted perovskites using the

group-theoretical methods implemented in computer program

ISOTROPY. We suggest that this program makes these

methods more accessible than hitherto. The analysis involves

®rst the association with each distortion of an irreducible

representation (irrep) of the parent space group Pm�3m, then

the listing of all the isotropy subgroups corresponding to the

irrep or irreps involved, an inspection of these results for

group±subgroup relationships, and ®nally for each group±

subgroup pair a determination as to whether the corre-

sponding phase transition is allowed to be continuous.

Program ISOTROPY is used at every step. A number of

experimental investigations will be reviewed, with particular

emphasis on cases in which the group-theoretical analysis

contributed signi®cantly to structure solution.

2. Group-theoretical analysis

In this section, we shall describe the various steps in the group-

theoretical analysis, and indicate how they are implemented

using ISOTROPY. It is ®rst necessary to clarify the description

of the structure of the perovskite aristotype.

2.1. The ideal perovskite

The ideal perovskite ABX3 is cubic, in space group Pm�3m

(Fig. 1). The structure is commonly visualized as a three-

dimensional network of regular corner-linked BX6 octahedra,

the B cations being at the centre of these octahedra and the A

cations being centrally located in the spaces between them.

There is more than one way of setting the perovskite in its

space group. We set the octahedrally coordinated B cation at

Wyckoff 1a, 0; 0; 0, the A cation at 1b, 1=2; 1=2; 1=2, and the

anion X at 3d, 1=2; 0; 0. Strontium titanate, SrTiO3, cubic with

lattice parameter a = 3.905 AÊ at room temperature, represents

an example of the ideal perovskite.

phase transitions
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2.2. B-cation displacement (ferroelectric)

As recognized by Megaw (1973), B cations can be displaced

from the centres of the BX6 octahedra. If all B cations are

equally displaced, we have the technically important case of

ferroelectricity, such as manifested in BaTiO3. This also

provides a simple yet non-trivial illustration of the application

of group theory to distorted perovskites.

The B cation, originally at 0; 0; 0, can be displaced in some

arbitrary direction from the centre of the BX6 octahedron. We

use symbols '1, '2, '3 to denote unit displacements in the

[100], [010], [001] directions, respectively. There is no

imperative that the magnitudes of the displacements in these

different directions should be equal. The operation on '1, '2,

'3 of any element g of the parent space group G0 = Pm�3m

produces linear combinations of these basic displacements,

according to

g�'1; '2; '3� � �'1; '2; '3�D�g�; �1�

where D(g) is a 3 � 3 matrix. For any g1; g2 2 G0, we ®nd

D�g1g2� � D�g1�D�g2�, which implies the set of matrices D(g)

carried by the basis functions '1, '2, '3 form a representation

of the group G0. Of course, the identity operation (g = E) must

leave everything unchanged and, since all B cations are

equally displaced, so too must every lattice translation.

Clearly, the inversion operation (g = I) will take each of the

unit displacements into its negative. Rotation by �=2 around

the z axis (g = C�4z) carries the unit displacement in the x

direction to the y direction, and the unit displacement in the y

direction to the unit negative displacement along the x

direction, leaving the displacement along the z direction

unchanged. A positive rotation around the threefold axis,

[111], (g = C�31) will carry unit displacement along the x

direction to the y direction, unit displacement along the y

direction to the z direction, and unit displacement along the z

direction to the x direction. Based on these arguments, we ®nd

D�E� �
1 0 0

0 1 0

0 0 1

0B@
1CA; D�I� �

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0B@
1CA;

D�C�4z� �
0 ÿ1 0

1 0 0

0 0 1

0B@
1CA; D�C�31� �

0 0 1

1 0 0

0 1 0

0B@
1CA: �2�

Proceeding with similar arguments, or simply by multiplying

the matrices corresponding to the generators (C�4z, C�31, I) of

G0, we obtain a mapping of all elements g 2 G0 onto a set of

3 � 3 matrices forming a representation of G0. This can be

identi®ed by reference to tables (Miller & Love, 1967) as the

three-dimensional irreducible representation (irrep) ÿÿ4 . This is

the required association of an irrep of Pm�3m with the

distortion under consideration.

Next we de®ne an `order parameter' g � ��1; �2; �3�2 where

�i represents the magnitude (and sign) of the displacement in

the direction of the basis function 'i. A general displacement '
can be written in terms of the basic displacements and the

order parameter

' �P
i

'i�i: �3�

An operation on ' by an element g 2 G0 results in

g' � g�'1; '2; '3�
�1

�2

�3

0@ 1A � �'1; '2; '3�D�g�
�1

�2

�3

0@ 1A: �4�

From the form of this equation, it is apparent that we can take

the basis functions as ®xed, and consider g 2 G0 as acting on

the order parameter rather than on the basis functions

themselves, so that

g

�1

�2

�3

0@ 1A � D�g�
�1

�2

�3

0@ 1A �5�

and the order parameter space carries the representation ÿÿ4 .

A particular displacement of the B cation is described by a

particular value of the order parameter g, and the operation g

carries this to another possibly different displacement gg. The

symmetry of the structure is determined by those g 2 G0 that

leave the displacement (and hence the structure as a whole)

invariant, that is for which

gg � g: �6�
These operations form a space group G termed an isotropy

subgroup of G0. We consider the speci®c case in which the

displacement is along the z axis, so g � �0; 0; �3�. Referring to

the example matrices in equation (2), we ®nd g = E and g = C�4z

leave g unchanged, whereas g = I and g = C�31 do not. Every

element of g 2 G0 is examined in this way, and it is found that

the space group comprising the elements that leave the

displacement invariant is the space group G = P4mm. As will

be explained below, this result can be obtained quickly using
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Figure 1
Schematic of the Pm�3m perovskite, for example SrTiO3, including an
outline of the cubic unit cell. The BX6 units are represented as octahedra,
the B atoms being visible within them, and the X atoms considered to lie
at the vertices. The A ion is centrally located in the cubo-octahedral cavity
between the octahedra.

2 The order parameter is a column vector, but for compactness when it is in the
text we write it as a row.



program ISOTROPY. We shall also use the program to ®nd

other isotropy subgroups corresponding to different choices

for the order parameter, and the results are summarized in

Table 1.

Barium titanate is known to adopt the structures in R3m,

Amm2, P4mm and Pm�3m, depending on temperature (Kay &

Vousden, 1949; Darlington et al., 1994).

A list of isotropy subgroups, such as appears in Table 1, can

be examined for group±subgroup relationships. These rela-

tionships can be established on the basis of the order par-

ameters. For example, if we consider (a,a,0) and (a,a,b), these

span respectively one- and two-dimensional subspaces of

order parameter space, and the two-dimensional space

includes the one-dimensional space. Clearly, all those elements

g 2 G0 satisfying gg � g when g � �a; a; b� will also satisfy this

condition when g � �a; a; 0�, so the isotropy subgroup Cm

corresponding to (a, a, b) must be a subgroup of Amm2

corresponding to (a, a, 0). The argument can be written more

generally as follows. If the subspace spanned by a particular

order parameter is of a higher dimension than that spanned by

another order parameter, but includes the subspace spanned

by the second order parameter, then the isotropy subgroup

associated with the second order parameter is a subgroup of

that associated with the ®rst order parameter. We have applied

this argument in all our previous work (Howard & Stokes,

1998; Howard et al., 2002; Stokes et al., 2002; Howard et al.,

2003; Howard & Zhang, 2004a,b; Howard & Stokes, 2004).

The group±subgroup relationships from Table 1 can be illu-

strated in a tree, shown here as Fig. 2.

A ®nal point of interest, of particular relevance to the study

of phase transitions, is whether the phase transition corre-

sponding to a particular group±subgroup pair is allowed to be

continuous. (A transition that does not correspond to a group±

subgroup pair cannot be continuous.) This assessment

depends for example on Landau theory (Landau & Lifshitz,

1980). Considering a temperature-induced transition, we can

expand the excess free energy for transitions from Pm�3m

associated with B-cation displacement as

G � 1
2 A�T ÿ Tc���2

1 � �2
2 � �2

3� � 1
4 B��2

1 � �2
2 � �2

3�2
� 1

4 B0��4
1 � �4

2 � �4
3� � 1

6 C��2
1 � �2

2 � �2
3�3 � . . . ; �7�

where A, B, B0, C are presumed constant. The expansion

should be valid for small values of the order parameter. The

excess free energy is determined largely by long-range elastic

interactions, except for the term containing T, which is an

entropy term. It must be invariant under all the operations

g 2 G0, and to achieve this each term in the expansion has

been constructed from an invariant. The expansion is in effect

a 2±4±6 potential and, for A > 0 and B > 0, continuous phase

transitions would be expected (Salje, 1990). Indeed, if we were

to take only the ®rst two terms and write them in terms of the

squared magnitude of the order parameter, �2 � �2
1 � �2

2 � �2
3,

we would ®nd from the condition for a minimum @G=@� � 0,

for temperatures below the phase transition,

�2 � A�Tc ÿ T�=B; �8�
as would be the classic form for a second-order phase transi-

tion. The effect of the term �4
1 � �4

2 � �4
3 is to distinguish the

different directions in order-parameter space since, for a given

small value of �, it achieves maximum values for directions

such as (�,0,0) and minimum values for directions like

(�,�,�)=
p

3. It follows that the true minimum of G for small �
will occur at (0,0,�) or (�,�,�)=

p
3 according as B0 < 0 or

B0 > 0. There is no way that the true minimum can occur at

(�,�,0)=
p

2. Comparing with the entries in Table 1, we see that

we can have continuous transitions from Pm�3m to either

P4mm (0,0,a) or R3m (a,a,a), but that our free-energy

expansion cannot account for a transition to Amm2 (a,a,0).

Evidently, such a transition, if it occurs, cannot be described

using the free-energy expansion for small values of the order

parameter, so the transition could not be continuous. As to the

other group±subgroup relationships indicated in Fig. 2, the

expansion in the order parameter for the transition from R3m

to Cm is of the 2±3±4 type, leading to a ®rst-order transition

(Salje, 1990), whereas expansions for all the other transitions

are of the 2±4±6 type without the subtleties encountered

above, so all the other transitions are allowed to be contin-

uous. We will refer again to the expansion (7) in x5.

We have identi®ed the irrep, found one isotropy subgroup

(listed others), identi®ed group±subgroup relationships, and

examined using Landau theory which transitions are allowed

phase transitions
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Table 1
Structures derived from the ideal perovskite in Pm�3m by displacement of
the B cation.

The active irrep is ÿÿ4 (k = 0, 0, 0). Different values for the order parameter
correspond to different directions of cation displacement. We show, for each
structural derivative, the space-group symmetry (and space-group number)
along with the lattice vectors and origin referred to the lattice vectors and
origin of the Pm�3m parent structure.

Order parameter Space group Basis vectors Origin

(0, 0, 0) Pm�3m (No. 221) (1, 0, 0), (0, 1, 0), (0, 0, 1) (0, 0, 0)
(0, 0, a) P4mm (No. 99) (1, 0, 0), (0, 1, 0), (0, 0, 1) (0, 0, 0)
(a, a, 0) Amm2 (No. 38) (0, 0, 1), (1, �1, 0), (1, 1, 0) (0, 0, 0)
(a, a, a) R3m (No. 160) (1, �1, 0), (0, 1, �1), (1, 1, 1) (0, 0, 0)
(a, b, 0) Pm (No. 6) (0, 1, 0), (0, 0, 1), (1, 0, 0) (0, 0, 0)
(a, a, b) Cm (No. 8) (1, 1, 0), (�1, 1, 0), (0, 0, 1) (0, 0, 0)
(a, b, c) P1 (No. 1) (1, 0, 0), (0, 1, 0), (0, 0, 1) (0, 0, 0)

Figure 2
A schematic diagram showing the group-subgroup relationships among
the seven space groups listed in Table 1. The lines indicate group±
subgroup relationships ± a dashed line indicates that, according to
Landau theory, the corresponding phase transition cannot be continuous.



to be continuous. We will now show how these various steps

are completed with the aid of computer program

ISOTROPY.3

The association of an irrep with the B-cation displacement

is made quite readily using ISOTROPY. An approach closely

resembling the one we have described above is re¯ected in the

program run recorded (in its entirety) here (Fig. 3). We ®rst set

the parent space group as #221 (Pm�3m). Next we note that

B-cation displacements identical at all B sites will not lead to

any multiplication of the unit cell, so the distortion will be

associated with the ÿ point (k = 0,0,0) of reciprocal space. The

entry `value kpoint gm' restricts the search to irreps associated

with the ÿ point. We then use `show microscopic vector' to

look for displacements at the Wyckoff a position ± this is

where the B cation is located ± and ®nd only irrep ÿÿ4 produces

displacements at this point. This is the required result.

The program can be run again, if desired, to examine the

effect of irrep ÿÿ4 at Wyckoff positions b and d, and it is found

that the irrep can produce displacements at both positions.

Note also that the program can accept abbreviated instruc-

tions (e.g. v par 221, d dis), provided only that these abbre-

viations do not result in ambiguity.

The next step is to list the isotropy subgroups of Pm�3m for

the irrep ÿÿ4 . The dialogue is now almost self-explanatory. The

instruction `show direction vector' shows the order parameter

for each of the isotropy subgroups. These include P4mm as we

obtained above, although ISOTROPY has by default listed

that domain with cation displacement in the x direction and

fourfold axis [100]. We have used instructions `show basis' and

`show origin' to obtain the origin and lattice vectors of each

isotropy subgroup referred to the origin and lattice vectors of

the Pm�3m parent. It may be seen that we completed our Table

1 using the output (Fig. 4) from this run. The Wyckoff posi-

tions in each isotropy subgroup, given the Wyckoff position in

the parent, can be printed if desired.

The recognition of group±subgroup relationships is based

on the order parameters, and the process was fully explained

above. The order parameters are listed by ISOTROPY, but the

identi®cation of group±subgroup relationships from these

order parameters remains in most cases a manual process.

ISOTROPY can be used to examine the transition corre-

sponding to any group±subgroup pair to determine whether

the corresponding phase transition is allowed to be continu-

ous. The pair is checked in Landau theory, and also against the

more demanding requirement of renormalization group

theory (Hatch et al., 1986, and references therein). The

instruction `show continuous' can be used prior to `display

isotropy' to give the information required. The results for the

transitions from Pm�3m to P4mm, Amm2, R3m are immedi-

ately listed. For the other group±subgroup pairs, we might set

`value size 1' on the basis that the displacements under

consideration do not multiply the size of the primitive unit

cell, and examine each pair in turn. The program listing (Fig.

5) is in this case incomplete, and illustrates only the analysis of

the P4mm to Pm and R3m to Cm group±subgroup pairs.

In our account of the use of program ISOTROPY, we have

followed as closely as possible the same procedures as we did

in our earlier more formal treatment. ISOTROPY does

however offer a variety of other approaches to the problem.

For example, if we started from the knowledge that the
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Figure 3
ISOTROPY dialogue. Finding the irrep that gives ferroelectric B-cation
displacements.

Figure 4
Enumeration of the isotropy subgroups. Combining the elementary
vector displacements from Fig. 3 as indicated by the order parameter
listed here gives the cation displacement in each case.

Figure 5
Determining whether transitions corresponding to group±subgroup pairs
are according to renormalization group (RG) or Landau theory allowed
to be continuous.

3 The reader intending to follow the detail of our arguments is encouraged to
refer to the documentation available at the ISOTROPY web site (http://
stokes.byu.edu/isotropy.html), in particular the Tutorial.



B-cation displacement could produce a tetragonal structure in

space group P4mm, on a cell essentially the same size as the

Pm�3m cell, then ISOTROPY could immediately identify the

pertinent irrep as ÿÿ4 .

2.3. B-cation displacement (antiferroelectric)

An antiferroelectric pattern of B-cation displacements is

encountered in tungsten trioxide, WO3. (This is a perovskite

missing the A cation.) If we consider what would be a (001)

plane of W ions in an ideal perovskite structure, the dis-

placements of W ions are perpendicular to this plane and in

alternating sense. This leads to a doubling of the repeat

distance in both x and y directions, so we seek an irrep at the

M point (k = 1=2; 1=2; 0) of reciprocal space that produces the

required displacements at Wyckoff a sites (Fig. 6).

Although there are two irreps producing displacements at

Wyckoff a, only for Mÿ3 are the displacement vectors in the

[001] direction as required. The displacement is in the positive

direction for the ions at (0,0,0) and (0,0,1), and in the negative

direction for the ions at (1,0,0) and (0,1,0). Evidently, Mÿ3 is

the irrep required. A further application of ISOTROPY shows

that irrep Mÿ3 with order parameter (a,0,0) leads to a structure

in P4=nmm, as is observed in WO3 above 1173 K (Howard et

al., 2002).

2.4. BX6 octahedral tilting

The most commonly occurring distortion in perovskites is

octahedral tilting. By this we mean the tilting of the BX6

octahedra about one or more of their symmetry axes, main-

taining both regularity of the octahedra (approximately) and

their corner connectivity (strictly). Such tilting allows greater

¯exibility in the coordination of the A cation, while leaving the

environment of the B cation essentially unchanged. We shall

®nd it is also a major contributor to structural variability in

perovskites.

The ®rst systematic analysis of octahedral tilting was

undertaken by Glazer (1972, 1975), who developed a

description of the different possible patterns of octahedral

tilting, then obtained space groups by inspection. Glazer's

description was in terms of component tilts around the

`pseudo-cubic' axes, that is the cubic axes of the parent

structure. He noted that the tilt of one octahedron around one

of these axes determines (via the corner connections) the tilts

of all the octahedra in the plane perpendicular to this axis, but

that successive octahedra along the axis can be tilted in either

the same or the opposite sense. The structure of SrZrO3 at

1073 K (Fig. 7) provides a simple example of octahedral tilting.

Glazer describes the tilting using symbols of the form a#b#c# in

which the literals refer in turn to tilts around axes in the x, y

and z directions of the Pm�3m parent structure. The repetition

of a letter indicates that the tilts about the corresponding axes

are equal in magnitude. The superscript # takes the value � or

ÿ to indicate that the tilts of successive octahedra along the

relevant axis are in the same or opposite sense. We use the

terms `in-phase' tilting to describe the former case (�) and

`out-of-phase' tilting for the latter (ÿ). For directions about

which there is no octahedral tilting, we show the superscript #

as 0. The Glazer symbols for describing octahedral tilting are

now almost universally adopted.

The group-theoretical analysis of octahedral tilting was

described in a previous paper (Howard & Stokes, 1998), and

we must refer the reader to that paper for details. The order

parameter is a six-component vector with components

proportional to the angles of in-phase and out-of-phase tilting

around axes in the x, y and z directions of the parent structure.

It is found that none of the operations g of Pm�3m mix in-phase

(�) and out-of-phase (ÿ) tilting, so we consider this to

comprise two three-component vectors, one for the in-phase

tilting and one for the out-of-phase tilting, and each carrying a

three-dimensional irrep of the parent space group Pm�3m. To

analyse this situation, we can run ISOTROPY to show the

rotations around a given Wyckoff position (`show microscopic

vector pseudo') rather than the vector displacements we have

shown before. (Rotations and spins transform like pseudo-

vectors, sometimes also called axial vectors.) We ®nd (see

Appendix A in Howard & Stokes, 1998, or Case Study 1 in the

ISOTROPY Tutorial) that the irrep associated with the in-

phase tilts is M�3 (k = 1=2; 1=2; 0) and that associated with the

out-of-phase tilts is R�4 (k = 1=2; 1=2; 1=2). We show, by way of

illustration (Fig. 8), the search at the R point.

Evidently, R�4 is the only R-point irrep leading to any tilting

of octahedra centred on the Wyckoff positions a. Restricting
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Figure 6
Finding the irrep that gives antiferroelectric B-cation displacements.

Figure 7
The structure SrZrO3 at 1073 K. The tilting of corner-linked octahedra is
evident, as is the fact that the two layers shown tilt in opposite sense. The
tilt system in Glazer's notation is a0a0cÿ.



attention to the ®rst of the `projected pseudo vectors', we see a

positive tilt around an axis in the parent z direction for the

octahedron centred on 0,0,0, negative tilts as required by

corner connectivity of the octahedra at 1,0,0 and 0,1,0, and at

0,0,1 a negative tilt consistent with tilting of successive octa-

hedra along the tilt axis being tilted in the opposite sense (out-

of-phase tilting). This con®rms that R�4 is the required irrep.

The irreps being established, the procedure for ®nding the

isotropy subgroups is similar to that followed in x2.2. Setting

the irrep ®rst as M�3 leads to a listing of isotropy subgroups

corresponding to in-phase tilts alone, and setting it next as R�4
lists those corresponding to out-of-phase tilts. Structures

involving both in-phase and out-of-phase tilting are listed

using instructions `value irrep M3+ R4+' followed by `display

isotropy coupled'. These instructions produce a list of 14

isotropy subgroups together with the relevant order par-

ameters (see ISOTROPY Tutorial, Case Study 1). We exclude

ten of these subgroups because they show both in-phase (�)

and out-of-phase (ÿ) tilting around the same axis and so do

not correspond to `simple' tilts. By this we mean that the tilts

would differ in magnitude (and possibly also in sense) between

one octahedron and the next, a circumstance we choose to

exclude from our consideration. Group±subgroup relation-

ships are determined from the order parameters in the usual

way, and ISOTROPY is used to examine each group±

subgroup pair to determine whether the corresponding phase

transition is allowed to be continuous. The results from our

analysis of octahedral tilting in perovskites are summarized

here in Fig. 9, reproduced from the erratum by Howard &

Stokes (2002).

The analysis of octahedral tilting just described raises a

number of matters meriting additional comment:
* The only tilt systems considered are those in which

successive octahedra along the tilt axis either all have the same

sense of tilt or alternate in sense. More complex patterns of

tilting (e.g. two octahedra tilting in one sense, the next two in

the opposite sense) have been excluded at the outset.
* The problem involves two irreps, M�3 and R�4 , and so

provides an example of the combined effect of two distortions.

ISOTROPY proves particularly powerful when the combined

effects of two or more distortions must be considered.
* Only `simple' tilt systems have been accepted. That is,

structures showing non-zero positive and negative tilts around

the same axis have been culled from the results.
* We have argued (Howard & Stokes, 1998) that, as regards

octahedral tilting, the tilt system within a particular isotropy

subgroup will adopt the lowest symmetry consistent with the

space-group symmetry. For example, the structure in Cmcm

allows a tilt system a0b+cÿ (see Fig. 9), and we have argued

that tilt system a0b+bÿ based on some accidental equality of

the in-phase and out-of-phase tilt angles will not in fact occur.

By this means, we have reduced Glazer's list of 23 tilt systems

to the 15 shown in Fig. 9.

Octahedral tilting occurs in combination with other distor-

tions, such as the ferro- and antiferroelectric patterns of

B-cation displacement described in xx2.2 and 2.3. The former

case, involving combinations of ÿÿ4 with M�3 and R�4 , has been

treated by Stokes et al. (2002). The results comprise the 7

structures shown in Fig. 2, the 15 structures shown in Fig. 9

(noting however the repetition of the parent structure in

Pm�3m), and 40 additional structures with both tilts and

B-cation displacements. Glazer's notation was extended to

convey information on the cation displacement as well as on

tilts. The case of antiferroelectric displacements, involving

combinations of Mÿ3 with M�3 and R�4 has been considered by

Howard et al. (2002). Under the condition that the order

parameter for Mÿ3 is (a,0,0), as it is for the high-temperature

tetragonal form of WO3, or of derivative lower symmetry, such

as (a,b,0), 18 different structures were found.

2.5. Double perovskites A2BB
000X6 and B-site cation ordering

Substitution of cation B0 for B leads in general to the solid

solution AB1ÿxB0xX3, but if x � 0.5 and B and B0 differ suf®-
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Figure 8
The search at the R point (k = 1=2; 1=2; 1=2) for an irrep associated with
octahedral tilting. Subsequent application of ISOTROPY will yield order
parameters with components referring to tilts around axes in z, x and y
directions in turn.

Figure 9
A schematic diagram recording the structures for perovskites found by
Howard & Stokes (1998). The diagram shows the space-group symmetry,
along with the Glazer (1972) symbol for the tilts. The lines indicate
group±subgroup relationships, and a dashed line joining a group with its
subgroup means that the corresponding phase transition is in Landau
theory required to be ®rst order. The ®gure has been reproduced from
Howard & Stokes [Acta Cryst. (2002), B58, 565].



ciently in charge and/or size then B-site cation ordering may

occur. The formula is then properly written as A2BB0X6 and

the compound is described as a double perovskite. The most

common ordering that occurs in such compounds is a rock-salt

ordering of B and B0 cations over the parent B (Wyckoff a)

sites.4 This ordering will lead to a doubling of the unit cell in

every direction, and so is expected to be associated with the R

point (k = 1=2; 1=2; 1=2) of reciprocal space. The search for

the irrep proceeds as follows (Fig. 10), showing scalar distor-

tions (in this case atomic occupancy) at the Wyckoff a sites.

Taking f and ÿf to indicate sites occupied by B and B0

cations, respectively, it is seen that the one-dimensional irrep

R�1 is the irrep required. The ordered structure is in space

group Fm�3m on a 2 � 2 � 2 unit cell. The combination of

B-cation ordering, irrep R�1 , with octahedral tilting, irreps M�3
and R�4 , represents a straightforward application of

ISOTROPY, and 12 different structures result (Fig. 11).

In relation to this work (Howard et al., 2003), we mention

that:
* There are some differences between the Howard,

Kennedy & Woodward results and those published earlier by

Aleksandrov & Misyul (1981). The most signi®cant relate to

the retention by Aleksandrov & Misyul of structures with both

in-phase and out-of-phase tilts around the same axis. Howard,

Kennedy & Woodward rejected these on the grounds they

were not `simple' tilts.
* The structure of Sr2YTaO6 originally reported as triclinic

(Woodward, 1997c) has been re-examined and shown to be

monoclinic, tilt system aÿaÿc+ in space group P21=n.

Sr2YNbO6 adopts the same structure (Howard et al., in

preparation)
* The Howard, Kennedy & Woodward review of known

structures, if expanded to include the A-site-de®cient double

hydroxides BB0(OH)6 listed by Mitchell (2002), would show

examples such as schoen¯iesite MgSn(OH)6 in space group

Pn�3, mushistonite CuSn(OH)6 in space group P42=nnm, and

stottite FeGe(OH)6 in space group P42=n. These display

symmetries not otherwise encountered in the double perov-

skites.5

Aleksandrov & Misyul (1981) considered combinations of

cation ordering, irrep R�1 , with both ferroelectric patterns of

B-cation displacement, irrep ÿÿ4 , and octahedral tilting, irreps

M�3 and R�4 . The application of ISOTROPY is again

straightforward, although the listings are too long to repro-

duce here. Along with the 12 tilting-only structures appearing

in Fig. 11, we ®nd 6 structures with B-cation displacements but

no tilting (R�1 � ÿÿ4 ), 14 structures combining B-cation

displacements with in-phase tilting (R�1 � ÿÿ4 �M�3 ), 6

structures combining B-cation displacements with out-of-

phase tilting (R�1 � ÿÿ4 � R�4 ), and 5 structures with simple

tilts (from a list of 14 in total) combining B-cation displace-

ments with both in-phase and out-of-phase tilting

(R�1 � ÿÿ4 �M�3 � R�4 ). The interested reader should

encounter no dif®culty in reproducing these results. The

results are summarized in Table 2, where we use the modi®ed

Glazer notation (Stokes et al., 2002), subscripts � and ÿ being

used to denote ferroelectric B-cation displacements along a

given axis, and superscripts retaining their usual meaning.
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Figure 11
A schematic diagram indicating the group±subgroup relationships among
the structures formed by the double perovskites A2BB0X6 with a rock-salt
pattern of B-cation ordering. Full details of the structures are to be found
in the paper by Howard et al. (2003).

Figure 10
Finding the irrep that gives rock-salt ordering on the B site.

Figure 12
Finding the irrep that gives a body-centred pattern of 1:3 ordering on the
B site.

5 The structures formed, being related to elpasolite K2NaAlF6, are referred to
as elpasolites.
5 In fact, Howard et al. (2003) recognized certain double perovskites with
mixed A-site occupancy as examples showing Pn�3 space-group symmetry, but
they found no other examples of the structures in space groups P42=nnm or
P42=n.



There is a measure of agreement between these results and

those of Aleksandrov & Misyul (1981),6 but a detailed

comparison is dif®cult. Discrepancies arise because Aleksan-

drov & Misyul retain structures with polarization direction or

tilt systems showing higher symmetries than the space group

will allow. For example, for tilt system a�a�a� (or    in

their notation), we ®nd the only polar structure is (using

modi®ed Glazer symbols) a��a��a�� in R3. Aleksandrov &

Misyul evidently record structures in Pnn2 for    =00p

(their reference), and in Pc for    =pp0. We ®nd these

structures are respectively a�0 b�0 c�� and a��b��c�0 . Both struc-

tures allow the three tilt angles to be different, and the second

of these also allows the two non-zero polarization components

to differ. We do not expect to ®nd a structure with equal tilt

angles in either space group Pnn2 or Pc, nor one with polar-

ization components equal in Pc. In addition, we ®nd errors in

some space-group symmetries, such as for systems [reference

in Aleksandrov & Misyul's (1981) tables given in parentheses]

a0
�a0
�c�� (00 =p1p1p2), a0

0b�0 cÿ0 ( 0�=00p) and a0
�b��cÿ0

( 0�=p1p20).

2.6. Perovskites A4BB
000
3X12 ± 1:3 B-site cation ordering

We refer here to a body-centred pattern of ordering on the

perovskite B sites. This cation arrangement is found, for

example, in Ba4LiSb3O12, which is cubic in space group Im�3m

on a 2 � 2 � 2 unit cell (Jacobson et al., 1974). In this case, we

will ®nd the irrep using our knowledge of the parent structure

in Pm�3m and the derived Im�3m structure.

This search (Fig. 12) produces two candidate irreps. Given

that the structure in Im�3m is on the same origin as the parent

structure inPm�3m, it is clear that M�1 is the appropriate irrep,7

the order parameter being (a,a,a). This result can be checked

using `display distortions'.

The combination of this cation ordering, irrep M�1 , with

octahedral tilting, irreps M�3 and R�4 , has been examined

recently by Howard & Stokes (2004). The analysis involves

additional arguments speci®c to the case of cation ordering

associated with multidimensional irreps (in contrast to the

cation ordering of x2.5 where the irrep was one-dimensional).

We illustrate with the results obtained from the combination

of the cation ordering M�1 with in-phase octahedral tilting M�3
(Fig. 13).

Now the ®rst three components of the order parameter

relate to the cation ordering M�1 , and the last three to the in-

phase octahedral tilting M�3 . The last three components

correspond in fact to tilts around axes in the z, x and y

directions, respectively, of the parent structure (see Fig. 8; also

Appendix A in Howard & Stokes, 1998, and Case Study 1,

ISOTROPY Tutorial). What we see is that only one of the

listed subgroups, R�3, tilt system a+a+a+, shows the full

symmetry (a,a,a) of the cation ordering. The argument here is

that we must accept certain of the structures allowing but not

requiring a cation arrangement with order parameter (a,a,a) ±

that is with M�1 order parameters (a,a,b) or (a,b,c). The

structures we accept are those, such as that in I4=m, tilt system

a0a0c+, where it is the tilting that forces the lower space-group

symmetry. The space-group symmetry allows but does not

require a cation arrangement of a lower symmetry than the 1:3

arrangement we suppose. The structures we reject include

those such as that in C2=m, order parameter (a,b,c,d,0,0),

same tilt system and a subgroup of I4=m, where the further
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Table 2
Isotropy subgroups of Pm�3m for the irrep R�1 in combination with irreps
ÿÿ4 and/or M�3 and/or R�4 .

For each subgroup, we show the space-group symmetry (number), the order
parameters for the irreps involved, and the tilt-displacement system in a
modi®ed Glazer (1972, 1975) notation. The components of the order
parameter associated with ÿÿ4 indicate B-cation displacements in the x, y, z
directions (of the parent structure), respectively, and the components of the
order parameters associated with irreps M�3 and R�4 have been permuted to
show tilts around the axes in the x, y, z directions. Lattice vectors and origins
for the isotropy subgroups can be obtained from ISOTROPY as required. It
will be found, for example, that structures in systems a0

�b0
�c0

0 and a0
�a0
�c0
�, both

in space group Cm, are on different cells.

Space group ÿÿ4 M�3 R�4 System

Fm�3m (No. 225) (0, 0, 0) (0, 0, 0) (0, 0, 0) a0
0a0

0a0
0

I4mm (No. 107) (0, 0, a) (0, 0, 0) (0, 0, 0) a0
0a0

0c0
�

Imm2 (No. 44) (a, a, 0) (0, 0, 0) (0, 0, 0) a0
�a0
�c0

0

R3m (No. 160) (a, a, a) (0, 0, 0) (0, 0, 0) a0
�a0
�a0
�

Cm (No. 8) (a, b, 0) (0, 0, 0) (0, 0, 0) a0
�b0
�c0

0

Cm (No. 8) (a, a, b) (0, 0, 0) (0, 0, 0) a0
�a0
�c0
�

P1 (No. 1) (a, b, c) (0, 0, 0) (0, 0, 0) a0
�b0
�c0
�

P4/mnc (No. 128) (0, 0, 0) (0, 0, a) (0, 0, 0) a0
0a0

0c�0
Ama2 (No. 40) (a, 0, 0) (0, 0, b) (0, 0, 0) a0

�b0
0c�0

P4nc (No. 104) (0, 0, a) (0, 0, b) (0, 0, 0) a0
0a0

0c��
Pmn21 (No. 31) (a, a, 0) (0, 0, b) (0, 0, 0) a0

�a0
�c�0

Pm (No. 6) (a, b, 0) (0, 0, c) (0, 0, 0) a0
�b0
�c�0

Cc (No. 9) (a, 0, b) (0, 0, c) (0, 0, 0) a0
�b0

0c��
Pc (No. 7) (a, a, b) (0, 0, c) (0, 0, 0) a0

�a0
�c��

P1 (No. 1) (a, b, c) (0, 0, d) (0, 0, 0) a0
�b0
�c��

P42/nnm (No. 134) (0, 0, 0) (0, a, a) (0, 0, 0) a0
0b�0 b�0

P42nm (No. 102) (a, 0, 0) (0, b, b) (0, 0, 0) a0
�b�0 b�0

Abm2 (No. 39) (0, a, a) (0, b, b) (0, 0, 0) a0
0b��b��

Cm (No. 8) (a, b, b) (0, c, c) (0, 0, 0) a0
�b��b��

Pn�3 (No. 201) (0, 0, 0) (a, a, a) (0, 0, 0) a�0 a�0 a�0
R3 (No. 146) (a, a, a) (b, b, b) (0, 0, 0) a��a��a��
Pnnn (No. 48) (0, 0, 0) (a, b, c) (0, 0, 0) a�0 b�0 c�0
Pnn2 (No. 34) (0, 0, a) (b, c, d) (0, 0, 0) a�0 b�0 c��
Pc (No. 7) (a, b, 0) (c, d, e) (0, 0, 0) a��b��c�0
P1 (No. 1) (a, b, c) (d, e, f) (0, 0, 0) a��b��c��
I4/m (No. 87) (0, 0, 0) (0, 0, 0) (0, 0, a) a0

0a0
0cÿ0

I4 (No.79) (0, 0, a) (0, 0, 0) (0, 0, b) a0
0a0

0cÿ�
Cm (No. 8) (a, b, 0) (0, 0, 0) (0, 0, c) a0

�b0
�cÿ0

C2/m (No. 12) (0, 0, 0) (0, 0, 0) (0, a, a) a0
0bÿ0 bÿ0

C2 (No. 5) (0, a, a) (0, 0, 0) (0, b, b) a0
0bÿ�bÿ�

Cm (No. 8) (a, b, �b) (0, 0, 0) (0, c, c) a0
�bÿ�bÿÿ

R�3 (No. 148) (0, 0, 0) (0, 0, 0) (a, a, a) aÿ0 aÿ0 aÿ0
R3 (No. 146) (a, a, a) (0, 0, 0) (b, b, b) aÿ�aÿ�aÿ�
P�1 (No. 2) (a, b, c) (0, 0, 0) (0, 0, 0) aÿ0 bÿ0 cÿ0
P1 (No. 1) (a, b, c) (0, 0, 0) (d, e, f) aÿ�bÿ�cÿ�
C2/c (No. 15) (0, 0, 0) (0, a, 0) (0, 0, b) a0

0b�0 cÿ0
C2 (No. 5) (0, 0, a) (0, b, 0) (0, 0, c) a0

0b�0 cÿ�
Cc (No. 9) (a, b, 0) (0, c, 0) (0, 0, d) a0

�b��cÿ0
P21/c (No. #14) (0, 0, 0) (a, 0, 0) (0, b, b) a�0 bÿ0 bÿ0
P21 (No. 4) (0, a, a) (b, 0, 0) (0, c, c) a�0 bÿ�bÿ�
Pc (No. 7) (a, b, �b) (c, 0, 0) (0, d, d) a��bÿ�bÿÿ
P42/n (No. 86) (0, 0, 0) (a, a, 0) (0, 0, b) a�0 a�0 cÿ0
P42 (No. 77) (0, 0, a) (b, b, 0) (0, 0, c) a�0 a�0 cÿ�

7 The results are reproduced by Aleksandrov & BartolomeÂ (2001) as their
Table VII. There is a typographical error in this table, in that the heading
p1p1p2 has been transcribed as p1p2p3.
7 The alternate irrep M�4 gives an ordering pattern on the A-cation (Wyckoff
b) sites.



reduction of symmetry would be a consequence of the lower

cation symmetry alone. Applying these arguments, we have,

for the combination of M�1 cation ordering and in-phase

octahedral tilting M�3 , structures in R�3 (a+a+a+), I4=m (a0a0c+),

C2=m (a0b+b+) and P�1 (a+b+c+). The reader is referred to

Howard & Stokes (2004) for the full results.

The argument here contrasts with that advanced when

considering octahedral tilts. In the case of tilts, we argued

(x2.4) that the order parameter will always show the lowest

symmetry that the space group will allow. For the cation

ordering considered here, we argue that the symmetry may

very well remain higher than the space-group symmetry will

allow. The difference relates to the different mechanisms

involved ± it is envisaged that octahedral tilting is very readily

and quickly accommodated, whereas cation rearrangement is

a diffusion-controlled process expected to be extremely slow

under normal conditions.

2.7. Perovskites A3BB
000
2X9 ± 1:2 B-site cation ordering

A number of perovskites, for example Ba3ZnTa2O9, show a

layering of different B-site cations onto (111) planes of the

parent perovskite, one layer of B cations being followed by

two layers of B0 cations (Galasso & Pyle, 1963). The cation

ordering in this case is evidently associated with the point k =

1=3; 1=3; 1=3 of reciprocal space, that is the point on the � line

�, �, � where � = 1=3. This perovskite has, in the absence of

octahedral tilting, a structure in space group P�3m1 (Jacobson

et al., 1976). First, using ISOTROPY, we ®nd that the irreps on

the � line are �1, �2, �3. Then we examine these irreps in

turn, setting � = 1=3 in each case (Fig. 14).

Evidently, the eight-dimensional �1 (k = 1=3; 1=3; 1=3) is

the irrep to be associated with this pattern of cation ordering,

the order parameter being (a, 0, 0, 0, 0, 0, 0, 0).

The combination of this 1:2 cation ordering, irrep �1, with

octahedral tilting, irreps M�3 and R�4 , has also been examined

by Howard & Stokes (2004). It might have been expected that

the eight-dimensional irrep �1 would pose problems similar to

those encountered in the case of the three-dimensional irrep

M�1 (x2.6), but such was not the case. There were, among those

structures not requiring the order parameter to be

(a,0,0,0,0,0,0,0), no additional tilt systems to be found. In

summary, ten different structures were found, and the group±

subgroup relationships determined. Full details can be found

in Howard & Stokes (2004).

The analysis of these 1:2 perovskites uncovered one ®nal

complication. Whereas in all previous work the symbol aÿaÿc0

could be used to describe octahedral tilting around either

[110] or [1�10], in the 1:2 perovskites, these are not equivalent.

This is because the layered ordering, irrep �1 order parameter

(a, 0, 0, 0, 0, 0, 0, 0), makes the [111] direction unique. Distinct

tilt symbols, such as aÿaÿc0 and aÿ �aÿc0, are needed to

distinguish the different possibilities. More on this matter can

be found in Howard & Stokes (2004).

2.8. A summary of the group-theoretical procedures

The ®rst step is to associate with each of the distortions to

be considered an irreducible representation (irrep) of the

parent space group Pm�3m. As can be seen above, we use

ISOTROPY to help in this step. A number of results, including

those given above, are summarized in Table 3.

The structures produced by these different distortions

(irreps), acting separately or in combination, can be enumer-

ated quite readily by a further application of ISOTROPY. The

different structures are described by different values of some

(generally vector) order parameters, with component(s)

representing the magnitude(s) of the distortion(s) present. A

particular value of the order parameter corresponds to a

particular distorted structure, and the space-group symmetry

of that structure is de®ned by the isotropy subgroup,

comprising the operations of the parent space group that leave

this order parameter unchanged. For any irrep or combination

of irreps, ISOTROPY lists all the isotropy subgroups, along

with values of order parameter that describe the structures

involved. In some cases and after careful examination, certain

of the structures listed by ISOTROPY are rejected. For

example, in considering octahedral tilting, we removed those

structures showing both in-phase and out-of-phase tilts around

phase transitions
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Figure 14
Finding the irrep corresponding to the 1:2 B-site cation ordering found
for example in Ba3ZnTa2O9. The work is facilitated by knowing the
structure resulting from the cation ordering alone. Note the need to check
all irreps on the � line to con®rm that only one of these gives a structure
in the speci®ed space group.

Figure 13
Listing isotropy subgroups for a perovskite with both 1:3 cation ordering
(irrep M�1 ) and in-phase octahedral tilting (irrep M�3 ).



the same axis. In the case of perovskites with 1:3 B-site cation

ordering, we rejected structures with patterns of cation

ordering inconsistent with that assumed.

Group±subgroup relationships, if of interest, can be

obtained by inspection of the order parameters. To reiterate, if

the subspace spanned by a particular order parameter has

higher dimension than that spanned by another order par-

ameter, but includes the latter subspace, the isotropy subgroup

associated with the second order parameter is a subgroup of

that associated with the ®rst order parameter. Once group±

subgroup relationships have been identi®ed, ISOTROPY can

be used to examine each group±subgroup pair to determine

whether the corresponding phase transition is allowed to be

continuous.

3. Comparison with previous analyses

The approach we have outlined is very much dependent on the

implementation of group theory in the computer program

ISOTROPY.

As mentioned earlier, the ®rst systematic analysis of octa-

hedral tilting in perovskites ABX3 was carried out by Glazer

(1972). After developing his systematic description, he

modelled the different tilt systems and obtained the appro-

priate space groups by inspection. Glazer listed 23 different tilt

systems, and worked out the space group for each. In his

enumeration of tilt systems, he distinguished (for example) tilt

systems a0b+bÿ and a0b+cÿ, both belonging to the same Cmcm

isotropy subgroup. We have argued that, since the space-group

symmetry does not require the tilt angles around the y and z

axes to be equal in magnitude (the ®rst is an in-phase and the

second an out-of-phase tilt), the ®rst of these tilt systems will

not occur. Glazer showed eight tilt systems with higher

symmetry, in the sense just described, than required by the

corresponding space group. Removing these eight leaves

®fteen tilt systems, just the number found in our work (Fig. 9).

We found tilt system a+a+cÿ, which Glazer had in Pmmn, to

have the higher symmetry P42=nmc, and we rejected the other

systems in Pmmn on the grounds that the tilts involved were

not simple, that is there were � and ÿ tilts around the same

axis. The reader is referred to our earlier paper (Howard &

Stokes, 1998) for a detailed comparison of our results with

Glazer's. Glazer's results have formed the starting point for

the analysis of structures showing cation ordering. In his

analysis of A2BB0X6 double perovskites, Woodward (1997a)

examined each of Glazer's tilt systems, to see which symmetry

elements would be destroyed by the R�1 cation ordering, and

thence to determine the space group. In following Glazer,

Woodward listed all 23 tilt systems, conforming to 13 different

space groups, one of which derived from the rejected space

group Pmmn. We found 12 distinct structures in our work (Fig.

11, also Howard et al., 2003). Nagai et al. (1997) also based

their analysis of perovskites with 1:2 (�1, �= 1=3) B-site cation

ordering on Glazer's work, in that these authors determined

the space-group symmetry from those elements common to

Glazer's tilt system and the cation ordering in question. Again

there are some differences, with regard to both space groups

and allowed tilt systems, between our results (Howard &

Stokes, 2004) and those of Nagai et al. In the case of A4BB03X12

perovskites with 1:3 (M�1 ) B-site cation ordering, Alonso et al.

(1990) considered the impact of cation ordering on the space

group for the common tilt system aÿaÿc+.

Aleksandrov and his co-workers (Aleksandrov, 1976, 1978;

Aleksandrov & Misyul, 1981; Aleksandrov & BartolomeÂ,

2001) have made a substantial contribution to the crystal-

lography of perovskites, and the last mentioned paper

presents an excellent and comprehensive review. In his

work on ABX3 perovskites with octahedral tilting, Aleksan-

drov (1976) identi®ed as we did the irreps of Pm�3m corre-

sponding to in-phase and out-of-phase octahedral tilting, and

listed the possible structures, evidently making use of earlier

compilations. It is regrettable that, in our own study of octa-

hedral tilting in ABX3 perovskites (Howard & Stokes, 1998),

we overlooked this early work. Aleksandrov & BartolomeÂ

(2001), however, compared the structures from Howard &

Stokes (1998) with those listed earlier by Aleksandrov (1976).

After correcting Aleksandrov's space group for the a+a+cÿ

tilt system from Pmmm to P42=nmc, they found the only

remaining differences could be attributed to our rejection

(x2.4) of tilt systems with higher symmetry than the space

group will allow, and of tilt systems showing � and ÿ tilts

around the same axis. There is not such good agreement on

diagrams showing group±subgroup relationships (Fig. 9) and

possible transition paths. We contend that the tendency on

lowering temperature is not to increase the number of tilt

components per se but simply to transform to a lower isotropy

subgroup. In a subsequent study, Aleksandrov (1978) exam-

ined how the symmetries of the different tilt systems would be

lowered by ferroelectric and antiferroelectric patterns of B-

cation displacements. The results have been corrected and

extended (to more general displacement directions) by

Aleksandrov & BartolomeÂ (2001). There are a signi®cant

number of discrepancies between the results from our

computer-assisted analysis of ferroelectric perovskites and

Aleksandrov's results in either original or corrected form.

As regards antiferroelectric patterns of B-cation displace-

ment, it is not easy to relate the results as presented by

Aleksandrov & BartolomeÂ (2001) to our results for WO3

(Howard et al., 2002), in part because the former do not

encompass more general directions of cation displacement,
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Table 3
Irreducible representations (irreps) of Pm�3m associated with distortions
in perovskites.

Distortion Irrep Example

Octahedral distortions (Jahn±Teller) R�4 KCuF3

B-cation displacement (ferroelectric) ÿÿ4 BaTiO3 (300 K)
B-cation displacement (antiferroelectric) Mÿ3 WO3 (1000 K)
BX6 octahedral tilting (in-phase) M�3 NaTaO3 (843 K)
BX6 octahedral tilting (out-of-phase) R�4 SrTiO3 (<105 K)
A2BB0X6 (rock-salt ordering on B sites) R�1 Ba2CaWO6

AA0B2X6 (layering on A sites) Xÿ3 LaLa1/3Ti2O6

A4BB03X12 (1:3 B-site cation ordering) M�1 Ba4LiSb3O12

A3BB02X9 (1:2 B-site cation ordering) �1 (� = 1/3) Ba3ZnTa2O9



such as described by Mÿ3 order parameter (a,b,0).

Aleksandrov & Misyul (1981) also examined the effects of

octahedral tilting in the double perovskites A2BB0X6. They

based the analysis on the parent elpasolite in Fm�3m, and

found irreps X�3 and ÿ�4 to correspond respectively with in-

phase and out-of-phase tilting. As mentioned earlier (x2.5),

there are some differences between their results8 and ours

(Howard et al., 2003), which are now largely understood.

Aleksandrov & Misyul (1981) proceeded to record how the

symmetries of the different structures are reduced by a

ferroelectric pattern of B-cation displacements, work revisited

in x2.5 here.

In another approach to perovskite crystallography,

BaÈrnighausen (1975) has recorded a hierarchy of space groups

adopted by the different variants. There being no reference to

irreps, it is not clear how any connection may be made to the

physical distortions involved. The hierarchy also involves

intermediates of no physical signi®cance. For the example of

ferroelectric B-cation displacement (x2.2), we have argued

that displacement of the B cation along the z axis lowers the

symmetry directly from Pm�3m to P4mm. By contrast,

BaÈrnighausen's scheme shows an intermediate space group

P4=mmm. BaÈrnighausen's approach has been followed by

Bock & MuÈ ller (2002). With reference to the double perov-

skites A2BB0X6, we have found very signi®cant differences

between our results (Howard et al., 2003) and those obtained

by Bock & MuÈ ller.

A new account of `tilting structures in perovskites' has

been published very recently by Shirokov & Torgashev

(2004). These authors, too, use group-theoretical methods in

their work. However, they make two assumptions that

distinguish their work from that of other authors. First, from

among the different structures they obtain, they retain only

those structures in which all the B sites remain crystal-

lographically equivalent. Secondly, and perhaps more

controversially, they allow distortions associated with the six-

dimensional irreps X�5 and M�5 that in our analysis

(ISOTROPY Tutorial, Case Study 1) were rejected, on the

grounds they did not accord with the view of perovskites as

containing a three-dimensional network of (nearly) regular

corner-linked BX6 octahedra. The fundamental distortion

associated with M�5 , for example, leaves the four (equatorial)

anions of the BX6 octahedron in their starting plane while

moving the two (apical) anions so that the line joining them is

no longer perpendicular to the plane of the equatorial anions.

This is by no means simply a tilt, and indeed we believe such a

distortion is unlikely to occur.9 In any case, these are not the

tilts envisaged by Glazer (1972, 1975), and when such distor-

tions are active we suggest that the Glazer notation should not

be employed.

4. Experimental studies

Following general remarks on the approach to structure

determination in perovskites, a selection of experimental

studies will be reviewed.

4.1. General remarks

As stated at the outset, distortions in perovskites (Table 3)

are often subtle, in which case the structure of the perovskite

variant differs little from the parent structure in Pm�3m. The

diffraction pattern from the variant then may differ from that

from the parent only by a slight broadening or splitting of the

main peaks, and the appearance of weak superlattice peaks. It

has become our practice to index the main peaks (even if they

show splitting) on the basic perovskite cell,10 and then to

assign fractional indices to the superlattice peaks. A de®nitive

structure solution will very likely depend on further knowl-

edge of the perovskite under study, for example whether it is

ferroelectric, or a simple ABX3 perovskite with only octahe-

dral tilting expected, or a double perovskite A2BB0X6. In such

cases, the possibilities can be restricted to those appearing in

Figs. 2, 9, or 11, respectively.

Diffraction peak splitting may help to establish the

symmetry of the variant under study. For example, tetragonal

symmetry is expected to lead to doublet splitting of the h00-

type re¯ections while leaving the hhh-type re¯ections as

singlets. Rhombohedral symmetry is expected to lead to the

reverse effect. More complex patterns of peak splitting very

likely indicate orthorhombic or monoclinic symmetry. The

best techniques to establish these peak splittings, and so obtain

an indication of symmetry, are high-resolution X-ray and

neutron powder diffraction. Though peak splittings may help

to establish the symmetry, their absence does not prove a

higher symmetry, since the symmetry of the metric in

perovskites is sometimes higher than the space group will

allow. This was the case for Ca0.5Sr0.5TiO3, found to be

metrically tetragonal even at the resolution of a good

synchrotron-based powder diffractometer (Ball et al., 1998),

yet de®nitely orthorhombic in space group Pnma (Howard et

al., 2001).

The superlattice peaks will index according to the k value of

the relevant irrep. Distortions at the ÿ point (k = 0; 0; 0) will

produce no additional peaks, but will impact on the intensities

of the main perovskite peaks. Distortions at the X point (k =

0; 0; 1=2), M point (k = 1=2; 1=2; 0), and R point (k =

1=2; 1=2; 1=2) will give rise to superlattice peaks indexing with

one index half-integral, two indices half-integral, and all

indices half-integral, respectively. Perovskites A3BB02X9 with

1:2 cation ordering on the B site, irrep at � point (k =

1=3; 1=3; 1=3), will give rise to peaks indexing at third-integral

values. In electron diffraction parlance (Howard et al., 2001;

Ting et al., 2004), with peaks of the parent perovskite at

Gp, distortions associated with irreps at the X, M or R point

and � point (� = 1=3) will give rise to superlattice re¯ections

phase transitions
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10 Note that in Table VI of Aleksandrov & BartolomeÂ (2001), space group C2
3i

(R�3) is shown incorrectly as R�3c.
10 It should be noted that octahedral distortion is allowed in structures based
on irreps M�3 and R�4 , but the tilting does not depend on the octahedral
distortion itself.

10 This is how we indexed in studies of SrZrO3 (Howard, Knight et al., 2000)
and WO3 (Howard et al., 2002). We have on occasions found it convenient to
index on a 2 � 2 � 2 cell (Howard & Zhang, 2003).



at Gp � 1=2h001ip, Gp � 1=2h110ip, Gp � 1=2h111ip and Gp �
1=3h111ip, respectively. Though we can for any distortion

indicate where the superlattice peaks might be found, it is

evident from Table 3 that in general we cannot determine

distortions unambiguously. That table shows three different

distortions at both M and R points. In addition, the coupling of

distortions at different points of reciprocal space can give rise

to distortions producing intensity at the sum or difference

points ± for example the simultaneous presence of M- and

R-point octahedral tilting will produce weaker intensity at the

X points (Glazer, 1975). This underlines the need for addi-

tional information about the distortions involved.

In the event that two distortions operate at the same point

of reciprocal space, such as in double perovskites A2BB0X6

showing both rock-salt cation ordering (R�1 ) and out-of-phase

octahedral tilting (R�4 ), the use of more than one diffraction

probe is desirable. In double perovskites of typical heavy-

metal oxide composition, a combination of X-ray diffraction,

which is generally more sensitive to the cation ordering, and

neutron diffraction, sensitive to the oxygen movement from

octahedral tilting, provides the best means to establish and

quantify the extent of cation ordering and the tilts. The

particular challenge of these double perovskites has been

discussed in greater detail elsewhere (Howard et al., 2003).

Electron diffraction has the sensitivity to show the superlattice

re¯ections whenever they occur (Ting et al., 2004), and

because of this provides a powerful tool for space-group

determination, but considerable care must be exercised to

ensure that multiple diffraction effects are avoided (or at least

identi®ed) and that samples selected are single domain.11 In

the event that single-crystal diffraction patterns can be

recorded (from a single domain), the information on space-

group symmetry goes beyond the identi®cation of superlattice

spots at the M and R points. In the electron diffraction

investigation of Ca0.5Sr0.5TiO3 mentioned above (Howard et

al., 2001), it was possible to distinguish space group Pnma

from Cmcm, even though the corresponding tilt systems both

show in-phase (M�3 ) and out-of-phase (R�4 ) tilts (see Fig. 9 and

Table 3).

A strategy employed on a number of occasions has been to

study the structures as a function of temperature (in ®ne steps)

or composition. A comparison with the sequences suggested in

®gures such as Figs. 2, 9 or 11 can provide corroborating

evidence on the structures involved. Details on the structural

phase transitions are also recorded. By means of temperature

studies, it has been possible to resolve structural ambiguities in

SrZrO3 (Howard, Knight et al., 2000) and WO3 (Howard et al.,

2002). Detailed studies on PrAlO3 (Carpenter et al., 2005)

have been completed. A study of the system SrTiO3±La2/3TiO3

as a function of composition and temperature has also been

carried out (Howard et al., 2004). It is our experience that

phase transitions allowed to be continuous are usually

continuous or nearly so, and that transitions required to be

®rst order, either because there is no group±subgroup rela-

tionship or by Landau theory, are distinctly discontinuous.

From Fig. 9 and space groups Pnma and Cmcm, it is likely that

now we would rule out space group Cmcm for Ca0.5Sr0.5TiO3

on the basis that the structure appeared to derive continuously

(Ball et al., 1998) from a structure known to be in Pnma.

4.2. Barium titanate (BaTiO3)

This is a classic ferroelectric material, discovered during

World War II (ch. 4 in Megaw, 1957), and its structures were

determined shortly afterwards (Kay & Vousden, 1949). The

structure is rhombohedral in R3m below about 193 K, then

orthorhombic in Amm2 to 278 K, tetragonal in P4mm to

393 K, and ®nally cubic in Pm�3m. It can be seen in Fig. 2 that

the ®rst two transitions do not involve group±subgroup pairs,

and so must be discontinuous. The transition from tetragonal

to cubic, though it is allowed to be continuous, is also ®rst

order. There are no superlattice peaks since the distortions are

at the ÿ point, but in the powder diffraction patterns the

splitting of the main peaks is readily observable (ch. 5 in

Megaw, 1957; Darlington et al., 1994). Non-centrosymmetric

space groups were chosen for the lower-symmetry phases,

based on the observations of piezoelectricity in these phases.

The fact that the distortions do not produce superlattice peaks,

but simply have some effect on the main peak intensities, has

made these distortions quite dif®cult to quantify. Neutron

diffraction measurements were made on single crystals, elec-

tric ®elds of 10 kV mÿ1 being applied to these crystals to

maintain them as predominantly single domain (Frazer et al.,

1955; Shirane et al., 1957). The details of the low-temperature

R3m structure were determined by re®nement from neutron

powder diffraction data (Hewat, 1974). More recently,

Darlington et al. (1994) have used the high-resolution powder

diffractometer at the ISIS neutron facility (Ibberson et al.,

1992) to study BaTiO3 between 150 and 425 K at 5 K intervals

of temperature. The symmetry changes were easily detected,

and at every temperature the lattice parameters were

recorded. Atomic coordinates were also obtained. The

rhombohedral and orthorhombic phases were found to coexist

at temperatures near 210 K; likewise, the orthorhombic and

tetragonal phases co-existed at around 295 K. No two-phase

mixtures were observed at the tetragonal-to-cubic phase

transition. Although the lattice parameters changed discon-

tinuously at each of the phase transitions, the cell volume

varied practically continuously over the whole temperature

range. The polarization changes direction at each of these

phase transitions (see order parameters in Table 1) but,

interestingly, its magnitude (calculated from the atomic coor-

dinates) is little affected by the sudden change in direction.

Darlington & Knight (1994) have carried out a very similar

study of the structures and phase transitions in KNbO3.

4.3. Strontium zirconate (SrZrO3)

Strontium zirconate is a perovskite showing three

temperature-induced phase transitions, but octahedral tilting

is considered to be the only distortion involved. Hence the
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11 Standard X-ray and neutron single-crystal techniques are generally not
applicable because of the propensity of perovskite variants to form
multidomain crystals. The small probe size in electron diffraction offers the
possibility of locating single domains.



schematic of Fig. 9 should apply. Carlsson (1967) was the ®rst

to examine these transitions, using both X-ray and thermal

methods. He summarized his observations in the schematic:

orthorhombic ÿ!973 K

continuous
pseudo-tetragonal

c=a< 1

ÿ!1103 K

discontinuous
tetragonal

c=a> 1

ÿ!1403 K

continuous
cubic:

Carlsson did not suggest space groups for these different

structures, presumably because the superlattice peaks were

not well de®ned in his work. Ahtee and co-workers (Ahtee et

al., 1976, 1978) used neutron powder diffraction to establish

the room-temperature orthorhombic structure as that in Pnma

(a+bÿbÿ) and recorded two diffraction patterns at elevated

temperatures in an effort to establish the structures of the

higher-temperature forms. They found the tetragonal phase to

be that in I4=mcm (a0a0cÿ), and for Carlsson's pseudo-

tetragonal phase proposed the (orthorhombic) structure in

Cmcm (a0b+cÿ). There is little doubt that the high-tempera-

ture cubic phase would be the ideal perovskite, in space group

Pm�3m. Ball et al. (1998) were no doubt in¯uenced by Ahtee

and co-workers in proposing the Cmcm structure for pseudo-

tetragonal Ca0.5Sr0.5TiO3 at room temperature, and in the

course of temperature studies of the phase transitions in

SrZrO3, SrHfO3 and CaTiO3 (Kennedy et al., 1999a,b,c), we

too suggested this structure as a possible intermediate. It can

be seen now that this was not a good choice for Carlsson's

pseudo-tetragonal phase. Fig. 9 shows that a transition from

the Pnma orthorhombic to Cmcm `pseudo-tetragonal' could

not be continuous, whereas the transition from Cmcm to

tetragonal I4=mcm could and probably would be continuous,

which would con¯ict with Carlsson's observations at both

transitions.

Howard, Knight et al. (2000) re-examined the phase tran-

sitions in SrZrO3, using very high resolution neutron powder

diffraction, and working in ®ne temperature steps (as little as

5 K) from room temperature to 1503 K. They paid careful

attention to both peak splitting and to the weak superlattice

peaks. Like Carlsson, they found three transitions, at

temperatures 1023, 1113 and 1343 K. The resolution was

suf®cient, and the temperature steps ®ne enough, to con®rm

the sudden reversal of tetragonal splitting at the second

transition. It was noted that, at the ®rst transition, the R-point

re¯ections persisted, but the M-point re¯ections disappeared.

This indicates the disappearance at this transition of the in-

phase tilts. Starting from the Pnma (a+bÿbÿ) structure, and

referring once more to Fig. 9, the only structure accessible by

continuous transition and showing only out-of-phase tilts is

that in Imma (a0bÿbÿ). This structure was con®rmed by a

Rietveld (1969) analysis. The results then can be summarized

as

orthorhombic

Pnma �a�bÿbÿ�
ÿ!1023 K

continuous
pseudo-tetragonal

Imma

�a0bÿbÿ�
b< a
p

2 � c
p

2

ÿ!1113 K

discontinuous
tetragonal

I4=mcm

�a0a0cÿ�
c> a
p

2

ÿ!1343 K

continuous
cubic

Pm�3m

�a0a0a0�

;

a sequence entirely consistent with both Carlsson's observa-

tions and the group-theoretical analysis. The lattice-parameter

data obtained in this study are reproduced here in Fig. 15.

Exactly the same structural sequence has been found in a

neutron study of SrSnO3 (Glerup et al., 2005), the transitions

being at temperatures 905, 1062 and 1295 K, and it is consid-

ered likely that it will also be found in SrHfO3. The sequence

has also been reported in temperature studies of SrRuO3

(Kennedy et al., 2002) and in composition studies on the

systems Sr1ÿxBaxSnO3 (Mountstevens et al., 2003) and

Sr1ÿxBaxHfO3 (Li et al., 2004). We note that the sequence

Pnma ! Imma ! R�3c ! Pm�3m seen earlier in BaCeO3

(Knight, 1994) can be considered closely analogous (Fig. 9) to

the sequence occurring in SrZrO3.

4.4. Tungsten trioxide (WO3)

Tungsten trioxide, WO3, can be considered as an ABX3

perovskite lacking the A cation. It adopts many different

structures, characterized by an antiferroelectric pattern of

W6+-ion displacements and, except at the highest tempera-

tures, WO6 octahedral tilting. In reviewing the various studies

of WO3, it is convenient to make reference to the structure

schematic shown here as Fig. 16.

Early X-ray studies established the structure at or just

above room temperature as monoclinic, in P21=n (aÿb+cÿ)

(Tanisaki, 1960) and at the highest temperatures (~1273 K)

tetragonal in P4=nnm (a0a0c0) (Kehl et al., 1952). In the high-

temperature X-ray pattern, the M-point re¯ections associated

with the W6+ displacement were easily seen. Anomalies in

speci®c heat and lattice parameters gave strong indications of

a structural phase transition at around 1173 K, but it is inter-

esting to note that not until 1999, when the ®rst neutron

powder diffraction studies of the high-temperature phases

were reported (Vogt et al., 1999; Locherer et al., 1999), was the

nature of this transition understood. In effect, the neutron

patterns recorded from tetragonal WO3 below 1173 K showed

R-point re¯ections, associated with out-of-phase octahedral

tilting, which had not been seen using X-rays. The structure is

that in P4=ncc (a0a0cÿ). To cut a long story short (see Howard

phase transitions
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Figure 15
Temperature dependence of (suitably reduced) lattice parameters for
SrZrO3. The structure in Imma is described on the same cell as that in
Pnma. This ®gure has been reproduced with permission from Howard,
Knight, Kennedy & Kisi (2000). Copyright (2000). Institute of Physics
Publishing.



et al., 2002, for the full account), after the 1999 neutron studies

it would have been reasonable to conclude from the experi-

mental studies that the sequence of structures above room

temperature was

monoclinic

P21=n

�aÿb�cÿ�

ÿ!603 K

continuous
orthorhombic

Pbcn

�a0b�cÿ�

ÿ!1013 K

discontinuous
tetragonal

P4=ncc

�a0a0cÿ�

ÿ!1183 K

continuous
tetragonal

P4=nnm

�a0a0c0�

:

Referring to Fig, 16, this sequence is not unreasonable, but

puzzling to the extent that the transition at 1013 K, which in

this sequence would be allowed to be continuous, is known to

be strongly discontinuous in nature.

Howard et al. (2002) carried out a study, again using very

high resolution neutron powder diffraction and ®ne

temperature steps. A small selection of their diffraction

patterns is shown in Fig. 17. They found a previously unrec-

ognized monoclinic structure existing over a limited (~80 K)

temperature range just below the P4=ncc tetragonal, and

transforming continuously to that tetragonal. From Fig. 16,

there are only two candidate structures, those in C2=c

(aÿb0cÿ) and P21=c (aÿaÿcÿ), and it was relatively easy to

establish that the observed monoclinic structure was the

second of these. Other structures were con®rmed as above, the

sequence becoming

monoclinic

P21=n

�aÿb�cÿ�

ÿ!623 K

continuous
orthorhombic

Pbcn

�a0b�cÿ�

ÿ!993 K

discontinuous
monoclinic

P21=c

�aÿaÿcÿ�

ÿ!1073 K

continuous
tetragonal

P4=ncc

�a0a0cÿ�

ÿ!1173 K

continuous
tetragonal

P4=nnm

�a0a0c0�

:

There being no group±subgroup relationship between the

structures in Pbcn and P21=c, the discontinuous nature of the

transition from the orthorhombic phase was now just as

expected. Although Howard et al. (2002) were ®rst to identify

a monoclinic phase between 993 and 1073 K, we note with

interest that Kehl et al. (1952) commented on broadening of

lines in the back-re¯ection region of X-ray patterns recorded

in this temperature range, and that at similar temperatures

there appear to be missing lattice-parameter data in the

Locherer et al. (1999) report.

4.5. Lanthanum titanate (La2/3TiO3)

This is a perovskite with a partially occupied A site, the

cations/vacancies being ordered in such a way that layers of A

sites are alternately fully and one-third occupied by the La3+

ions. According to this description, the c repeat is doubled, yet

the symmetry remains tetragonal, and the space-group

symmetry should be P4=mmm. This was indeed the structure

at temperatures above about 573 K, but the structure at room

temperature was found to show a slight orthorhombic distor-

tion (Abe & Uchino, 1974). Furthermore, synchrotron X-ray

measurements on materials close to this composition indicate

that the orthorhombic-to-tetragonal transition is continuous

(Ali et al., 2002; Yashima et al., 2002). These X-ray measure-

ments did not however lead to any reasonable model for the

orthorhombic structure.

Howard & Zhang (2003) carried out high-resolution X-ray

diffraction studies, under the prior assumption that the

orthorhombic distortion would be due to octahedral tilting.

The possible structures were enumerated using ISOTROPY

(irreps Xÿ3 , M�3 and R�4 ), and (corrected) results have been

presented by Howard & Zhang (2004a,b). There are only

three orthorhombic structures, a+b0c0 in Pmmm on a

1 � 2 � 2 cell, aÿb0c0 in Cmmm on a 2 � 2 � 2 cell, and

aÿaÿc0 in Pmma on a
p

2 � 2 � p2 cell related to the

tetragonal P4=mmm (1 � 2 � 2 cell) as a group±subgroup

pair, and hence by a potentially continuous phase transition.

The last can be excluded on the grounds that it does not give

the triplet splitting (observed in the synchrotron studies) at

the h00 re¯ections. The ®rst would lead to weak superlattice

re¯ections at the M points, and the second to re¯ections at the

R points. Close examination of the X-ray patterns (recorded

with very low background) revealed weak and previously

unnoticed re¯ections at the R points, whence the structure in
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Figure 17
Extracts from the neutron diffraction patterns from WO3 at selected
temperatures. The crosses represent the measured patterns, while the
continuous lines are ®tted. The main peaks are identi®ed by indices
referred to the parent structure in Pm�3m, the X-point re¯ections are
marked here as `AFE', and the R-point re¯ections are marked as such.
The pattern recorded at 1033 K is from a previously unrecognized
monoclinic structure, existing over only a limited range of temperatures.

Figure 16
Schematic of structures relating to WO3. The structures combine an
antiferroelectric pattern of W6+ displacements, along with WO6 tilting as
indicated by the Glazer symbols. The group±subgroup relationships are
shown in the usual way. This ®gure is essentially as displayed in the paper
by Howard et al. (2002).



Cmmm was established then re®ned. The structure was

determined, independently, without the group-theoretical

analysis but using neutron powder diffraction, where the

R-point re¯ections were readily seen (Inaguma et al., 2002;

Yashima et al., 2003). Other A-site-de®cient perovskites may

adopt the same structure (Howard & Zhang, 2004a,b).

4.6. Structures of complex perovskites

We are unaware of any studies of complex perovskites at

the level of detail seen in the preceding sections, and there has

been only limited use of group theory in underpinning struc-

tural results.

One of the best studied is BaBiO3, which is in effect the

ordered double perovskite Ba2Bi3+Bi5+O6, by virtue of the

charge ordering of the Bi ions.12 The results from different

authors (Cox & Sleight, 1976, 1979; Pei et al., 1990) were

collated by Howard et al. (2003) to suggest the sequence

monoclinic

P21=c

�a�bÿbÿ�

ÿ!�140 K

continuous
monoclinic

C2=m

�a0bÿbÿ�

ÿ!405 K

discontinuous
rhombohedral

R�3
�aÿaÿaÿ�

ÿ!750ÿ800 K

continuous
cubic

Fm�3m

�a0a0a0�

;

consistent with the scheme in Fig. 11. For the low-temperature

phase, Pei et al. (1990) tentatively suggested P2=m but, on the

basis of Fig. 11, P21=c was preferred. It is interesting to note

that, as regards octahedral tilting, the suggested sequence

exactly matches that seen in the simple perovskite BaCeO3

(Knight, 1994).

A more systematic study of the double perovskite

Sr2MnTeO6 was reported recently by Ortega-San Martin et al.

(2004). These authors determined the room-temperature

structure using neutron powder diffraction, then followed the

temperature evolution using laboratory X-rays. The sequence

they ®nd is

monoclinic

P21=c

�a�bÿbÿ�

ÿ!�523 K
monoclinic

C2=m

�a0bÿbÿ�

ÿ!�823 K
tetragonal

I4=m

�a0a0cÿ�

ÿ!�948 K
cubic

Fm�3m

�a0a0a0�

;

again in accord with Fig. 11. It is apparent from this ®gure (or

directly from consideration of the tilts) that the transition

from the monoclinic in C2=m to the tetragonal in I4=m could

not be continuous, but from the published data the nature of

this transition is dif®cult to determine. In this compound, as

regards octahedral tilting, the sequence matches that in

SrZrO3 (x4.3). We believe there is considerable scope for

further detailed diffraction studies of phase transitions in

complex perovskites.

We are aware of a few instances of the use of group theory,

implemented in ISOTROPY, as an aid to structure determi-

nation. In a study of Sr2FeMoO6, Chmaissem et al. (2000)

noted an apparently continuous phase transition from

tetragonal to cubic in Fm�3m at ~420 K, and after recourse to

ISOTROPY concluded that the space group would be I4=m

(as in the example just above). Park & Woodward (2000)

synthesized the perovskite Ba3TeBi2O9 (1:2 B-site cation

ordering, see x2.7), and determined its structure from a

combination of synchrotron X-ray and neutron powder

diffraction with analysis using ISOTROPY. The tilt system is

aÿaÿaÿ and the space group P�3c1. By contrast, Woodward &

Baba-Kishi (2002) had dif®culty reconciling their proposed

structure for the ferroelectric state of the relaxor oxide

Pb2(ScTa)O6 with results from the group-theoretical analysis.

As a ®nal example, we note that the structure for ferroelectric

Pb(Ti0.48Zr0.52)O3, ®rst proposed as a0
�a0
�cÿ� in space group Pc,

was given as aÿ�aÿ�cÿ� in space group Cc, following group-

theoretical analysis (Hatch et al., 2002).

5. Strains and order parameters

The focus in the previous section was on the determination of

structures and structural sequences. Another facet of the

phase-transition studies is the determination of order par-

ameters. We will discuss this aspect only brie¯y here.

The order parameter is in effect a thermodynamic concept

(Salje, 1990), but not without physical basis. In the case of

ferroelectric B-cation displacements, the order parameter is

measured by the cation displacements. For octahedral tilting,

the tilt angle provides a measure of the order parameter.

Phase transitions are classi®ed according to the manner in

which the order parameter (here denoted Q) varies as the

transition is approached. Speci®cally, for temperature-induced

phase transitions, the transition is second order, tricritical or

®rst order, according as Q2 / �Tc ÿ T�, Q4 / �Tc ÿ T� or Q

changes discontinuously at the transition temperature Tc. In

x2.2, we listed at equation (7) some terms in the free-energy

expansion, but that expansion also contains elastic energy

terms and terms coupling the strains to the order par-

ameter(s). Equilibrium conditions of the kind @G=@e � 0

(e being a strain) give equations for the strain in terms of the

order parameter, and hence it becomes possible to determine

order parameters from measurements of the spontaneous

strain. This strain is determined by the differences of lattice

parameters measured in the lower-symmetry phase from the

values they would take in the absence of the phase transition,

the latter usually being obtained by extrapolation from

measurements in the higher-symmetry phase. For octahedral

tilting in simple perovskites, the full free-energy expansion

(constructed with the aid of program ISOTROPY) and the

strain±order-parameter relationships derived from it have

been given by Carpenter et al. (2001). To summarize, the order

parameter might be obtained from measurements of spon-

taneous strain, from distortions derived from internal atomic

coordinates, or from both.

Lanthanum aluminate, LaAlO3, is a perovskite, rhombo-

hedral in R�3c at room temperature, that undergoes a con-

tinuous transition to cubic in Pm�3m at about 820 K. The tilt

system in the rhombohedral phase is aÿaÿaÿ, which means the

tilt is around the [111] direction of the parent perovskite.

There is only one variable atomic coordinate in the structure,

phase transitions
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12 Footnote added in proof. Kennedy et al. (in preparation) have just
completed a detailed high-resolution neutron powder diffraction study of
this compound. The low-temperature structure (below �140 K) has been
de®nitely established as the primitive monoclinic tilt system a+bÿbÿ in space
group P21=c. The sequence shown here has been con®rmed.



the x parameter of the O atom, and the octahedral tilt angle �
is easily calculated from this. A neutron diffraction study

(Howard, Kennedy & Chakoumakos, 2000) provided good

estimates for the x parameter, and hence for the tilt angle, with

the results shown in Fig. 18(a). Assuming �measures the order

parameter, and plotting �2 against temperature (Fig. 18b), we

®nd reasonable linearity in the vicinity of the phase transition,

so the transition is considered to be second order. The octa-

hedral tilt angle in LaAlO3 has also been estimated from

electron paramagnetic resonance measurements (EPR) on a

monodomain single crystal doped with Fe3+ (MuÈ ller et al.,

1968). The results from the neutron diffraction compare well

with the earlier EPR results.

Although the spontaneous strains in perovskites tend to be

small, the study of phase transitions in perovskites via these

strains has been pursued by Carpenter and co-workers.

Among the transitions examined in this way were the rhom-

bohedral R�3c to cubic Pm�3m transition occurring at about

1170 K in BaCeO3 (Carpenter et al., 1998), the tetragonal

I4=mcm to cubic Pm�3m transition in CaTiO3 at 1580 K

(Carpenter et al., 2001), and in PrAlO3 both the monoclinic

C2=m to orthorhombic Imma transition at 150 K and the

rhombohedral R�3c to cubic Pm�3m transition at 1860 K

(Carpenter et al., 2005). From thermodynamic analyses, it was

found that suitable symmetry-adapted strains should vary with

Q for the C2=m to Imma transition in PrAlO3, and with Q2 for

the other transitions. The strains were found to depend

approximately linearly on temperature for the transitions in

BaCeO3 and the 1860 K transition in PrAlO3, whereas, for

CaTiO3 and the 150 K transition, the square of the strain was

approximately linear in temperature. It was concluded that the

transitions were second order in nature, except in the case of

CaTiO3 where the transition was considered to be tricritical.

We believe the characterization of the 1860 K transition in

PrAlO3 as second order, based on analysis of spontaneous

strains, is more reliable than the earlier suggestion (Howard,

Kennedy & Chakoumakos, 2000) that this transition was

tricritical.

The relationship between the spontaneous strains and

physical order parameters, speci®cally octahedral tilting, was

investigated as part of the study on PrAlO3 (Carpenter et al.,

2005). These relationships were near to those expected.

Spontaneous strain proved invaluable in a recent synchrotron

X-ray study of the temperature-induced orthorhombic Cmmm

to tetragonal P4=mmm transition in La1/3NbO3 (Kennedy et

al., 2004). Octahedral tilt angles determined from atomic

coordinates varied too erratically to permit any ®rm conclu-

sion about the nature of the transition. The orthorhombic

strain, however, is in this case expected to vary with Q2, and

the square of this strain was found to vary quite linearly with

temperature. In this way, the transition was shown to be

tricritical.

6. Summary and outlook

Structural variability in perovskites has long been known, and

indeed the main types of distortions recognized long ago

(Megaw, 1973). Cation or anion ordering is common. The

various modi®cations can act separately or in combination. In

this paper, we have shown how group representation theory

can provide a basis for the systematic study of the various

distortions, and the structures that result from them. We

contend that this theory is now readily accessible via its

implementation in the computer program ISOTROPY. In

essence, three steps are involved ± the ®rst is the association of

an irreducible representation with any given distortion, the

second is the listing of isotropy subgroups for any irrep or

combination of irreps, and the last is the identi®cation of

group±subgroup relationships and examination of group±

subgroup pairs to see whether the corresponding phase tran-

sitions are allowed to be continuous. In the course of this

work, we applied ISOTROPY to list the possible structures of

elpasolites (ordered double perovskites) allowing both ferro-

electric cation displacement and octahedral tilting. The

ISOTROPY runs were completed and the possible structures

listed within ten minutes, though the transcription of results

into Table 2 took rather longer than this. There would seem to

be few distortions, or combinations of distortions, that

ISOTROPY could not readily address.

We reviewed a number of cases where the determination of

the perovskite structures has been assisted by group-theor-
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Figure 18
(a) The temperature dependence of the octahedral tilt angle in LaAlO3.
The tilt angle is calculated from the O-atom x parameter as determined
by neutron diffraction. The square of this tilt angle, shown in (b), shows a
nearly linear variation with temperature on approach to the phase
transition, showing the transition to be second order. The departure of
from linearity at low temperatures is attributed to saturation effects
(Salje, 1990).



etical analysis. If the nature of the distortion is known, then

the group-theoretical analysis will limit the possibilities. High-

resolution X-ray or preferably neutron diffraction in ®ne steps

of temperature may prove effective, since this provides a

constraint on not just one structure but on a structural

sequence. This methodology has been successful in resolving

structural ambiguities in simple ABX3 structures such as WO3

and SrZrO3, and we consider there is scope to study more

complex perovskites (e.g. double perovskites) by this means.

Finally, we described the monitoring of order parameters,

using spontaneous strains calculated from lattice parameters,

or physical distortions derived from atomic coordinates, or

both.

Studies of perovskites are likely to continue, and in these

further applications of ISOTROPY will be found. The appli-

cation of group theory and ISOTROPY, however, has not

been con®ned to the study of perovskites. Considerable

attention has been given to structures containing layers of

perovskite-type structure alternating with other structural

motifs. Such structures are reviewed in ch. 7 of Mitchell's

(2002) book. A number of authors have applied group-

theoretical methods to examine the effect of octahedral tilting

in such structures (Hatch & Stokes, 1987a,b; Aleksandrov &

BartolomeÂ, 2001). A combination of ferroelectric cation

displacements with octahedral tilting in layered perovskites

has been analysed using ISOTROPY to assist in studies of

temperature-induced phase transitions in SrBi2Ta2O9 and

Ba2Bi2Nb2O9 (Macquart, Kennedy, Hunter et al., 2002;

Macquart, Kennedy, Vogt & Howard, 2002). Similarly, the

effects of different patterns of Fe2+=Fe3+ charge ordering in

TbBaFe2O5 were investigated using ISOTROPY as a step

toward the determination of the crystal structure of this

compound in its charge-ordered state (Karen et al., 2001). The

applications of ISOTROPY appear not to be limited by the

complexity of the problems under consideration, but rather

are to be found wherever the parent symmetry is high and the

distortions more complex than are readily analysed by hand.

The work reviewed represents the efforts of many people,

and we take this opportunity to acknowledge the contribu-

tions of our co-authors in papers cited below. CJH is parti-

cularly appreciative of long and fruitful collaborations with

Brendan Kennedy, University of Sydney, Erich Kisi, Univer-

sity of Newcastle, Kevin Knight, ISIS Facility, and Michael

Carpenter, Cambridge University. We thank Kevin Knight,

Rene Macquart and Zhaoming Zhang for comments on the

manuscript.
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